
Exercise IV, Theory of Computation 2025
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

These problems are taken from various sources at EPFL and on the Internet, too numer-
ous to cite individually.

1 Are Turing-decidable languages closed under the following operations? Give informal proofs.

1a Intersection

1b Concatenation

1c Complementation

Do these arguments work for Turing-recognisable languages? If not, can you adapt them?

Solution: We argue that Turing-decidable languages are closed under all three operations.

1a Let M1 and M2 be Turing machines that decide the languages L1 and L2 respectively. We
construct the Turing machine M as follows.

On input x, do:
1. Run M1(x).
2. Run M2(x).
3. Accept if both M1 and M2 accepted.
4. Reject.

Since M1 and M2 decide the languages, they halt on any input. Thus, M also halts on any
input. Moreover, M clearly accepts an input x if and only if both M1 and M2 accept x. Thus,

L(M) = L(M1) ∩ L(M2) = L1 ∩ L2.

The same algorithm works for Turing-recognisable languages too. The only difference is that
M might not halt on input x ̸∈ L1 ∩ L2. But this is okay, since in this case we only need M to
recognises L1 ∩ L2 by accepting all x ∈ L1 ∩ L2.

1b Again, let M1 and M2 be Turing machines that decide the languages L1 and L2 respectively.
We now construct the Turing machine M as follows.

On input x, do:
1. For all possible decompositions x = x1x2:

(a) Run M1(x1).
(b) Run M2(x2).
(c) Accept if both M1(x1) and M2(x2) accepted.

2. Reject.

Page 1 (of 6)

CS-251 Theory of Computation • Spring 2025

This algorithms always halts, since for any input x there are only finitely many decompositions
x = x1x2 to check, and both M1 and M2 always halt since the decide L1 and L2. Since x ∈ L1L1

if and only if there is a composition x = x1x2 with x1 ∈ L1 and x2 ∈ L2, it is clear that M
decides L1L2.

For recognisable languages this algorithm does not work directly. This is because M1 or M2

could get stuck in an infinite computation while checking a decomposition x = x1x2 that does
not work. Thus we might never reach the decomposition which witnesses x ∈ L1L2. We can
however adapt the algorithm slightly to avoid this issue. Given Turing machines M1 and M2

that recognise L1 and L2, define M as follows.

On input x, do:
1. For all l ∈ N:

For all possible decompositions x = x1x2:
(a) Run M1(x1) for at most l steps.
(b) Run M2(x2) for at most l steps.
(c) Accept if both M1(x1) and M2(x2) accepted.

2. Reject.

We argue that M recognises L = L1L2.

• If x ∈ L, then there exists a decomposition x = x1x2 with x1 ∈ L1, and x2 ∈ L2.
Therefore, there is some finite k such that both M1(x1) and M2(x2) accept within k steps.
Note that each iteration of the outer loop only takes finitely many steps, and therefore M
will eventually reach a value of l for which both M1(x1) and M2(x2) accept. Thus, M(x)
accepts.

• If x ̸∈ L: Then for all possible decompositions x = x1x2, at least one of M1(x1) and M2(x2)
does not accept after l steps. Hence, M(x) does not accept.

1c If L is a language decided by the Turing machine M , then switching the accept and reject
states in M will yield a Turing machine which decides the complement of L.

If M just recognises L, the story is much more complicated. Intuitively, to construct a
machine which accept all strings not accepted by machine M , one would need to deal with the
inputs on which M fails to halt. These inputs should all be accepted by the new machine for
recognizing the complement.

Can we algorithmically check whether a Turing machine terminates when given a certain
input? As we prove in the next lecture, this is not possible! The result of the next lecture will
allow us to formalize these intuitions and provide a precise proof that recognizability is not closed
under complementation.

Page 2 (of 6)

CS-251 Theory of Computation • Spring 2025

2 Construct a Turing machine which recognizes the language

L =
{
0i1j | i > j ≥ 0

}
.

Solution: This problem asks to construct a Turing machine. It is useful to first think of a good
strategy to recognize the language L which is easily convertible into a Turing machine procedure.

One approach is to repeatedly match a symbol 0 from the very start of the string with a
symbol 1, from the very end. If we remove the matched symbols, then we recover a smaller
instance of the problem. If the matching fails, then we just need to check that the remaining
string is of the form 0k for some k ≥ 1.

On a high level, the operation can be described as follows. The machine starts from q0,
removes the first 0 it sees and moves right past all the 0s. Then it moves past all the 1s. Once it
reaches the (signified by ⊔), it turns back and crosses the last 1. Then it starts travelling back to
the beginning of the string, passing all the 1s and then all the 0s. Once it gets to the beginning
of what remains (signified by ⊔), it turns around and returns to state q0. The machine now
continually repeats this procedure of removing the first 0 and last 1.

In case any of our assumptions is broken (for instance if there is a 0 after a 1), then the
machine rejects. If at some point there are only 0s left (and at least one of them), the ma-
chine accepts. To get a better intuition of procedures like this and to convince yourself that
this machine actually decides L, it is always advisable to run them on some sample inputs
such as ε, 0, 0011, 00000111, 0101. Illustrated below is the state diagram of a Turing machine
implementing this strategy.

Note that there are many other strategies and concrete implementation choices that also
work. In fact, later in the course we will see a result that implies it is uncomputable to check if
a solution to this exercise is correct!

Page 3 (of 6)

CS-251 Theory of Computation • Spring 2025

3 Let L be the language over the singleton alphabet {1} consisting of all the strings whose lengths
are prime numbers. Thus, L = {11, 111, 11111, 1111111, . . .}. Is L Turing-decidable?

Solution: Yes, L is indeed Turing-decidable. This claim should not be surprising, as Turing
machines capture all algorithmic concepts, and we know quite a few algorithms to decide whether
a given number is prime or not. We now construct a Turing machine M which decides L.

On input x, do:
1. For 2 ≤ i ≤ |x| − 1:

(a) Make a copy x′ of x, somewhere else in memory.
(b) Repeatedly erase i symbols from x′ until |x′| < i.
(c) If |x′| = 0, reject.

2. Accept.

Clearly this procedure is finite and thus M always halts. We now show that M decides L.

• If |x| is prime, then there is no 2 ≤ i ≤ |x| − 1 which divides |x|. Therefore, every iteration
of the loop will end up with |x′| > 0 and thus M(x) accepts.

• If |x| is not prime, then there is at least one value 2 ≤ i ≤ |x| − 1 which divides |x|. The
corresponding iteration of the loop will thus make M(x) rejects.

4 Determine all the languages over the unary alphabet {1} which are decided by a Turing machine
that only has three states (including the accept and reject states).

Solution: We prove that the complete list of such languages is

∅, {ε}, {1n | n ≥ 1}, {1}∗.

It is not hard to see that all four of these languages are indeed decided by a Turing machine
of the desired form. Conversely, let M be a Turing machine with states Q = {qacc, qrej , q} that
decides the language L. If the start state of M is qacc, then L = {1}∗. If instead the start state
of M is qrej , then we have L = ∅. Thus, we can assume that q is the start state of M .

Since we want M to decide the language L, the machine M must halt on every input. Note
that if δ(q,⊔) maps to state q, then M will not halt on input ε. Thus, M halts as soon as the
head encounters an empty cell on the tape.

If δ(q, 1) = (q) maps to state q, then no matter what symbol is written in the place of 1, and
no matter which direction the head moves in afterwards, the head will just move off the beginning
or end of the input string. There it will encounter a ⊔ and halt with the same outcome for all
inputs. If instead δ(q, 1) maps to a halting state, then membership in L just depends on whether
the input is empty. We conclude that the list given above is exhaustive.

Page 4 (of 6)

CS-251 Theory of Computation • Spring 2025

5* Consider a variant of the Turing machine whose head can move right or stay put. In particular,
the transition function δ of such a machine takes the form

δ : Q× Γ → Q× Γ× {P, R},

where P corresponds to the head staying in place after changing the state and tape symbol.
Argue that this model of computation is not equivalent to our standard Turing machine

model, and describe the class of languages it recognises.

Hint: Firstshowthismodelisequivalenttothemodelwheretheheadcanonlymoveright.

Solution: Intuitively, not being able to move to the left means that the machine can only do
one pass over the input string. This reminds us of the way DFAs run computations. In fact, we
will show that these machines recognize exactly the regular languages.

It is easy to see that we can simulate any DFA on such a machine by moving to the right
at every step, reading the symbols one at a time, and halting accordingly as soon as we read
a blank symbol indicating the end of the input. More concretely, our Turing machine variant
will have the same set of states as the DFA, with an added “accept” and “reject” state. While
reading symbols of the input alphabet, we emulate the exact behaviour of the DFA. As soon as
we read the first blank symbol, we transition to either the “accept” or “reject” state, depending
on whether our current state was accepting or rejecting in the DFA. The start state will be the
same as in the DFA. Note that it does not matter what we write on the tape, as we never read
from the same tape position twice.

It remains to show that we can construct an equivalent DFA for such a Turing machine variant
M . Note that if there are any transitions of M where the head stays put, then in the next step,
the machine can only read the symbol it just wrote down. Thus, its behaviour in the next step
is already predetermined. Therefore, any finite sequence of transitions where only the last one
move to the right can be performed in a single step, by directly moving to the right and going
to the appropriate state. Compressing all the transitions of M in this manner, we obtain a new
machine M ′ that behaves exactly like M but does not make use of the “stay put” option. Thus,
M ′ moves right at each step. But such a transition function is essentially equivalent to the
transition function of a DFA, since writing symbols on the tape has no effect, given they cannot
be read again by M .

There is one subtle caveat to this construction. It might be that there is a sequence of
transitions in M that all stay put and correspond to a loop in the state diagram. But note that
if we were to take any such transitions, we would get stuck in an infinite loop. In the DFA we
can thus directly move into a dead rejecting state.

We showed that any DFA can be simulated by this Turing machine variant and that for any
such Turing machine there is a DFA that accepts the same language. Thus, we conclude that,
unlike standard Turing machines, the variant of Turing machines that can only stay put or move
right can recognize exactly the regular languages. Since we know that there are non-regular
languages that are recognised by a Turing machine, this proves that the given Turing machine
model is strictly weaker than the usual model.

Page 5 (of 6)

CS-251 Theory of Computation • Spring 2025

6* Construct a Turing machine which decides the language

L =
{
wwR | w ∈ {0, 1}∗

}
,

where wR denote the reverse of the string w.

Hint: Repeatedlyreducethelengthoftheinputwhilemakingsomechecks.

Solution: The following Turing machine recognizes the given language. The idea is to start
from the beginning, read and remove the first symbol, move to the end and check whether the
last symbol is equal to the first symbol, before removing it too. If not, reject the string. If they
are equal, return to the beginning and do the same thing again for the shorter string. In each
iteration, the machine needs to remember whether it saw a 0 or a 1 at the beginning. This is
achieved by having separate states for these two cases: If it sees a 0 at the beginning, it takes
the upper path (q0 → q1 ...) and checks for a 0 at the end. If instead it sees a 1 at the beginning,
it takes the lower path (q0 → q2 . . .) and checks for a 1 at the end. Once it sees a blank symbol,
it knows that it has matched all the 0s and 1s correctly; hence it accepts the string.

Page 6 (of 6)

CS-251 Theory of Computation • Spring 2025

